Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A large sample of active-region-targeted time-series images from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), the AIA Active Region Patch database (Paper I) is used to investigate whether parameters describing the coronal, transition region, and chromospheric emission can differentiate a region that will imminently produce a solar flare from one that will not. Parameterizations based on moment analysis of direct and running-difference images provide for physically interpretable results from nonparametric discriminant analysis. Across four event definitions including both 24 hr and 6 hr validity periods, 160 image-based parameters capture the general state of the atmosphere, rapid brightness changes, and longer-term intensity evolution. We find top Brier Skill Scores in the 0.07–0.33 range, True Skill Statistics in the 0.68–0.82 range (both depending on event definition), and Receiver Operating Characteristic Skill Scores above 0.8. Total emission can perform notably, as can steeply increasing or decreasing brightness, although mean brightness measures do not, demonstrating the well-known active-region size/flare productivity relation. Once a region is flare productive, the active-region coronal plasma appears to stay hot. The 94 Å filter data provide the most parameters with discriminating power, with indications that it benefits from sampling multiple physical regimes. In particular, classification success using higher-order moments of running-difference images indicate a propensity for flare-imminent regions to display short-lived small-scale brightening events. Parameters describing the evolution of the corona can provide flare-imminent indicators, but at no preference over “static” parameters. Finally, all parameters and NPDA-derived probabilities are available to the community for additional research.more » « less
-
Aiming to assess the progress and current challenges on the formidable problem of the prediction of solar energetic events since the COSPAR/ International Living With a Star (ILWS) Roadmap paper of Schrijver et al. (2015) , we attempt an overview of the current status of global research efforts. By solar energetic events we refer to flares, coronal mass ejections (CMEs), and solar energetic particle (SEP) events. The emphasis, therefore, is on the prediction methods of solar flares and eruptions, as well as their associated SEP manifestations. This work complements the COSPAR International Space Weather Action Teams (ISWAT) review paper on the understanding of solar eruptions by Linton et al. (2023) (hereafter, ISWAT review papers are conventionally referred to as ’Cluster’ papers, given the ISWAT structure). Understanding solar flares and eruptions as instabilities occurring above the nominal background of solar activity is a core solar physics problem. We show that effectively predicting them stands on two pillars: physics and statistics. With statistical methods appearing at an increasing pace over the last 40 years, the last two decades have brought the critical realization that data science needs to be involved, as well, as volumes of diverse ground- and space-based data give rise to a Big Data landscape that cannot be handled, let alone processed, with conventional statistics. Dimensionality reduction in immense parameter spaces with the dual aim of both interpreting and forecasting solar energetic events has brought artificial intelligence (AI) methodologies, in variants of machine and deep learning, developed particularly for tackling Big Data problems. With interdisciplinarity firmly present, we outline an envisioned framework on which statistical and AI methodologies should be verified in terms of performance and validated against each other. We emphasize that a homogenized and streamlined method validation is another open challenge. The performance of the plethora of methods is typically far from perfect, with physical reasons to blame, besides practical shortcomings: imperfect data, data gaps and a lack of multiple, and meaningful, vantage points of solar observations. We briefly discuss these issues, too, that shape our desired short- and long-term objectives for an efficient future predictive capability. A central aim of this article is to trigger meaningful, targeted discussions that will compel the community to adopt standards for performance verification and validation, which could be maintained and enriched by institutions such as NASA’s Community Coordinated Modeling Center (CCMC) and the community-driven COSPAR/ISWAT initiative.more » « less
-
A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling “null” and “bad” data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes’ theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of “Research to Operations” efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.more » « less
An official website of the United States government
